[10:30] Quadrature Amplitude Modulation (QAM) Receivers Part 2 (Review)

- A baseband signal in the transmitter experiences impairments as it passes through the transmitter analog/RF front end, channel, and receiver analog/RF front end
- A receiver would have subsystems to compensate impairments (Lecture Slide 16-3)
 - Fading: Automatic gain control
 - Additive noise: Matched filtering
 - Linear distortion: Channel equalizer
 - Carrier mismatch: Carrier recovery
 - Symbol timing mismatch: Symbol clock recovery (a.k.a. symbol timing recovery)

[10:40] Carrier Detection (Lecture Slide 16-9)

- Detect energy in the received signal
- Turn off subsystems when no transmission is occurring to save power
- Input: $x[m] = r^2[m]$ = instantaneous power
- Output: $p[m] = LPF\{x[m]\} =$ time-averaged power
- Low-complexity first-order IIR lowpass filter: p[m] = c p[m-1] + (1-c) x[m]
 - Since $p[m] \ge 0$ and $x[m] \ge 0$, 0 < c < 1
 - Transfer function: $P(z) = c z^{-1}P(z) + (1-c) X(z) \Rightarrow \frac{P(z)}{X(z)} = \frac{1-c}{1-c z^{-1}}$
 - Pole location *c* : larger *c* -> more selective lowpass filter (more smoothing)
 - Choice of *c* can improve run-time efficiency
 - Example: $c = 3/4 \Rightarrow \frac{3}{4}p[m-1] = \frac{1}{2}p[m-1] + \frac{1}{4}p[m-1]$
 - Since p[m − 1] ≥ 0, multiplying p[m-1] by 2⁻ⁿ can be replaced by right shift by n if p[m − 1] is in two's complement integer format

et $C = \frac{3}{4}$ and p[m-1] = n $\frac{3}{4}p[m-1] = \frac{1}{2}p[m-1] + \frac{1}{4}p[m-1]$ (p[m-1] >>1)if p[m-1] is two's comple EE4455 Nov. 30, 2020 · QAM Receivers Part 2. (Lecture 16) Im 323 · Quantization (Lecture 8) Rela Carrier Detection $X[m] = r^{2}[m] \ll power$ $TIR \circ FIR$ $TIR \circ FIR$ 2=

[11:00] Symbol clock recovery (Lecture Slide 16-10)

• QAM baseband transmitter consists of two upconverted Pulse Amplitude Modulation (PAM) transmitters that are 90 degrees out of phase (Lecture Slide 16-4)

• Recall structure of baseband PAM for in-phase part of baseband QAM transmitter: $i[n] \rightarrow \uparrow L \rightarrow a_T[m] \rightarrow \tilde{\iota}[m]$

$$[n] \xrightarrow{\rightarrow} | L \xrightarrow{\rightarrow} \underbrace{g_T[m]}_{pulse \ shaper} \xrightarrow{\rightarrow} i[n]$$

- o Lowpass pulse shaping filter should pass frequencies up to $f_{sym}/2$
- Raised cosine pulse shaping filter will expand bandwidth by factor $(1 + \alpha)$
- Baseband PAM bandwidth $B = \frac{1}{2} f_{sym} (1 + \alpha)$
- Upconversion by sinusoidal modulation doubles bandwidth to $f_{sym}(1 + \alpha)$
- \circ *i*[*n*] are symbol amplitudes with an average value of 0 (hence DC component is 0)
- One approach for symbol timing recovery (Handout M)
 - Use symmetry of received signal about f_c
 - Use two complex single-pole bandpass IIR filters with center frequencies $f_c B$ and $f_c + B$ in parallel and combine outputs nonlinearly to estimate symbol timing offset

[11:25] Baseband QAM demodulation (Lecture Slides 16-11 and 16-12)

- Demodulation: multiply by sinusoid and lowpass filter
 - In phase: $\overline{\iota}[m] = LPF\{2 \ x[m] \cos(\omega_c m)\}$
 - Quadrature: $\bar{q}[m] = LPF\{-2 x[m] \sin(\omega_c m)\}$
- Lowpass filter serves multiple purposes
 - $\circ \quad \text{Matched filter} \\$
 - o Anti-aliasing
 - $\circ \quad \text{Demodulation filter}$
- Downsample by *L* to return to symbol rate

